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Abstract-A spatial correlation method is formulated for linear dynamical problems in con­
tinuum mechanics with random boundary data. The essential feature of the method is the
formulation of a nonstochastic mixed initial-boundary value problem for the (matrix) spatial
correlation function of the (vector) state variable. Whenever the Green's function of the
(stochastic) problem can not be obtained in terms of known functions, a numerical solution
of the meansquare response and other second order response statistics by the spatial correlation
method is several hundred folds more efficient than any other available method. Further
improvements in the computational efficiency of the method for a steady state stationary
response process are also noted.

I. INTRODUCTION

Linear dynamical problems of continuous media are usually formulated as initial-boundary
value problems (IBVP) for linear partial differential equations. We are interested here in
the solution of such problems when the distributed loading as well as the prescribed initial
and boundary data are random functions of position and tlme with known statistics. A
solution in that case consists of obtaining the joint moment functions (or joint probability
density functions) of all orders of the state variable(s). In practice, one very often settles
for the relevant first and second order statistics.

Conventional methods (based on the L 2 calculus) for computing these statistics may be
divided into two distinct groups. The first group seeks the formal solution of the stochastic
IBVP in terms of the random loadings and auxiliary data (e.g. the Green's function repre­
sentation in the time or frequency domain), and then use it to get, by appropriate ensemble
averaging, the response statistics in terms of the known load statistics. A discussion of
this group of methods, collectively called the Green's function method here, can be found
in [1, 2] and references therein. The essential feature of the second group of methods,
collectively called the direct method here, is the formulation of nonstochastic IBVP for the
desired statistics themselves. These nonstochastic IBVP are then solved by conventional
methods of applied mathematics. Discussion of this second approach may be found in
[1, 3, 4] and references therein. Whenever the Green's function of the original (stochastic)
IBVP can be found in terms of known functions, there is no essential difference between
these two approaches in the level of computation involved.

t The research for this paper was supported by the Army Research Office-Durham and the Army
Materials and Mechanics Research Center (AMMRC) at Watertown, Mass. The author gratefully acknowl­
edges the use of the facilities of the Division of Engineering and Applied Science of the California Institute
of Technology for the preparation of the paper while he was a Visiting Associate.
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In this paper, we are concerned with problems for which the relelmnt Green's function
can not be found in terms of elementary or special functions. One example of such problems
is the forced transverse random vibration of flexible lifting rotor blades in forward flight.
The transverse displacement of the blade normalized by the blade length is governed by
the dimensionless PDE

(4wxxxx - t(1 - x 2 )wxx + [x + Yo fl cos t Ix + fl sin t I ]wx

+ [f3 + Yo Ix + II sin t I]w t + W tt = g(x, t) (O<x<l,t>O) (l.l)

where t and x are the dimensionless time and distance from the blade root, (, Yo, II and f3
are known constants and where g(x, t) is a random process with known statistics. The
statistics of complex random response processes such as the blade response w(x, t), can
only be ob~ained by some numerical method. For such complex processes, the direct
approach seems preferable since it is difficult to obtain accurate numerical solutions of
Green's functions in the physical space, not to mention the amount of machine computation
involved. However, except for special cases, the available direct methods for second and
higher order statistics also require an unrealistic amount of machine calculation and are
thus also impractical.

To bring out the computational efficiency (in connection with a numerical solution)
inherent in the direct approach not realized previously, a new method, effective and practical
for a much wider class of problems which includes the rotor blade problem, was developed
recently in[4, 5]. For simplicity, this" spatial correction method" was formulated there
for problems with homogeneous initial and boundary conditions. In principle, problems
with inhomogeneous auxiliary conditions can be transformed into one with homogeneous
auxiliary conditions. For example, the problem

ut = Uxx (0 < x < I, t > 0) (1.2)
with

u(x,O) 0 (0:::;; x:::;; I) (1.3)

u(O, t~ = 0, ux( I, t) = f(t) (t > 0) (1.4)

can be transformed into a problem with vanishing auxiliary conditions by setting vex, t) =
u(x, t) xf(t). In terms of vex, t), we have

with (takingf(O) 0)
(O<x<l,t>O)

v(x,O) = dO, t) = vx(l, t) = O.

(1.5)

(1.6)

Even in cases where f(t) is a known function, the conversion is possible only iff is differ­
entiable. For a random functionf(t) with only a few sample histories, it seems even more
desirable to work directly with the original problem (1.2)-(1.4).

In this paper, a spatial correlation method will be formulated for problems with random
boundary data. More specifically, we will formulate a numerically efficient solution scheme
for the second order statistics of the solution of the IBVP

U t =L [u] (x E V, t> 0) (1.7)
with

u(x, 0) = 0 (x E V) (1.8)

B[u] = j(x, t) (x E S, t > 0). (1.9)
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Here, u is a vector function defined in some volume V bounded by some surface(s) st (with
V being the union of V and S) and all time t ~ O. Land B are matrix linear partial differen­
tial operators involving only spatial derivatives, though the known coefficients of these
operators may be continuous functions of both x and t. For example, by setting Ul = W

and Uz = W t , equation (1.1) can be written in the form (1.7) with coefficients of L being
continuous functions of both x and t.

Upon ensemble averaging both sides of (1.7)-( 1.9), we find that the expected value of the
response U is determined by the original IBVP with lex, t) in (1.9) replaced by its expected
value. In view of the linearity of the problem, we will henceforth take !(x, t) to be of zero
mean so that u is also of zero mean. We can therefore concentrate on the second order
statistics of U characterized by its autocorrelation matrix.

While the method to be developed herein is very much akin to that described in[4, 5]
for random forcing distributed throughout V (henceforth called distributed loading), there
are enough distinct features in the analysis and results to deserve a separate treatment, at
least up to the point when further development becomes almost a repetition of [5].t Just
as in [5], our method is mainly for problems which can not be solved by known functions,
i.e. the Green's function of (1.7)-(1.9) can not be found in terms of elementary or special
functions. To obtain the steady state meansquare response by numerical integration via our
spatial correlation method is known to be several hundred folds more efficient than any
other available method[6, 7].

2. TEMPORALLY UNCORRELATED RANDOM BOUNDARY VALUES

Guided by the results of[4, 5], we consider in this section the class of linear dynamical
problems, (1.7)-(1.9), with temporally uncorrelated random boundary data. More speci­
fically, the vector random function!(x, t) in (1.9) is to be of zero mean and with an auto­
correlation function

(x, yES) (2.1)

where ( )T is the transpose of ( ), b(t) is the Dirac delta function, and R/(y, x, t) =
Rs(x, y, t). We begin by formulating an IBVP (initial-boundary value problem) for the
spatial correlation matrix U(x, y, t) of the unknown vector random function u(x, t),

U(x, y, t) = (u(x, t)uT(y, t). (2.2)

Evidently, U is defined in the product space V x V x (0, O'J). The solution of this problem
will then be used as the initial condition for another IBVP which determines the auto­
correlation matrix R(x, t; y, 1:') = (u(x, t)uT(y, 1:'). The latter completely characterizes the
second order statistics of u(x, t).

2.1 The spatial correlation matrix

To get a partial differential equation for the spatial correlation matrix U, we ensemble
average the identity [u(x, t)uT(y, t)], = u,(x, t)uT(y, t) + u(x, t)u?(y, t) after we use equation
(1.7) to eliminate u, and u? The result is

t For a multiply connected V, equation (1.9) denotes the collection {B,[ul = j,(x, t), (x E 5" t> O)}.
t In contrast, the formulation of a spatial correlation method for a problem with no distributed loading

and homogeneous boundary conditions but with random initial data of known statistics involves no addi­
tional novel feature and therefore will not be reported.
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(2.3)

where the subscripts x and y indicate that we are working in the x, t- and y, t-space,
respectively. This equation is supplemented by the initial condition

Vex, y, 0) = 0,

which follows from (1.8), and by the boundary conditions

(2.4)

(2.5)

(2.6)

BJV] = F(x, y, t) (x, y) E (S x V)

By[V T] = F(y, x, t) (x, y) E (V X S),

which follow from (1.9) with F(x, y, t) = <f(x, t)uT(y, t».
For a temporally uncorrelated f(x, t), we get from (2.1) and the Green's function repre­

sentation of the solution of (1.7)-( 1.9),

the relation

u(y, t) = f {G(y, tl y', t')f(y', t') dt' dy'
s 0

F(x, y, t) = f {Rs(X, y', t') <5(t - t')GT(y, tl y', t') dt' dy'
s 0

= t f Rs(x, y', t)GT(y, t Iy', t) dy'.
s

(2.7)

(2.8)

(2.10)

(2.11)

(2.12)

Since G(y, t 1y', t) = 1<5(y - y') (see Appendix of [5]), we have

{
o y ¢ S

F(x, y, t) = t Rs(x, y, t) YES' (2.9)

With (2.9), the IBVP (2.3)-(2.6) completely determines Vex, y, t) and can be solved,
exactly or approximately, by known methods of applied mathematics. In particular, a
numerical solution can always be obtained in a straightforward manner whenever the
Green's function of the problem (1.7)-( 1.9) can not be obtained in terms of known function.
A numerical solution of the meansquare properties of the response, contained in the
covariance matrix Vex, x, t), by way of (2.3)-(2.6) is several hundred folds more efficient
than any other available method (see[7] for a more detailed discussion on this point). This
computational efficiency constitutes the raison d~etre for the development of the spatial
correlation method.

Finally, we note that the inhomogeneous term F(x, y, t) for temporally uncorrelated
boundary data is always a discontinuous function even when Rs(x, y, t) is continuous. This
is in contrast to the case of uncorrelated distributed loading where the IBVP for Vex, y, t)
involves only continuous inhomogeneous terms if Rs(x, y, t) is continuous.

2.2 The autocorrelation matrix

To formulate an IBVP for the autocorrelation matrix R(x, t; y,t), we post-multiply
(1.7)-(1.9) by uT(y, t) and ensemble average to get

R t - Lxt[R] = °
R(x, 0; y, t) = °

Bxt[R] = <f(x, t)uT(y, t» == C(x, t; y, t)
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where the subscripts of Land B are to indicate that we are working in the x, t-space with
y and 't" as parameters. We can of course formulate another IBVP for the unknown cross­
correlation matrix C(x, t; y, 't") by post-multiplying 0.7)-(1.9) by JT(y, 't") and ensemble
averaging the resulting equations. Upon interchanging the roles of (x, t) and (y, 't"), we get

C/ -LyT[CT
] = ° (2.13)

C(x,t;y,O)=O (2.14)

ByT(CT] = <J(y, 't")fT(X, t». (2.15)

Since the right side of (2.15) is known, we may first solve (2.13)-(2.15) for C(x, t; y, 't") in
the y, 't"-space with x and t as parameters and then use the result in (2.12) for the determina­
tion of R. While this procedure (equivalent to the autocorrelation method for distributed
loading described in[3, 4, 5]) is straightforward in principle, it is impractical whenever a
solution by numerical integration is necessary. For a fixed pair of (Yo, 't"o), we must solve
the problem (2.13)-(2.15) once numerically (for all 't" ~ To) for every tn used in a step-by­
step integration scheme for the determination of R.

To formulate a more efficient procedure for the numerical solution of R, we note that,
for a temporally uncorrelatedJ(x, t), we have from the Green's function representation (2.7)

C(x, t; y, T) = f f <J(x, OJT(y', 't"'»GT(y, TIY', 't"') dT' dy'
S 0

= H(T - t)tRs(x, y', t)GT(y, tly', t) dy'

where H(0 is the unit step function. So, if (2.10) is solved for t > t only, i.e.

(2.16)

(t> T), (2.17)

we have, instead of (2.12), the homogeneous boundary condition

(x, y) E (5 x V), (t > T). (2.18)

But now as the initial condition, we have, instead of (2.11), the inhomogeneous condition

R(x, T; y, T) = U(x, y, 't) (2.19)

which follows from the definition of the two quantities involved and the continuity of R
across t = 'to But U(x, y, 't) has already been obtained in section (2.1); equations (2.17)-(2.19)
therefore define an IBVP for R. Once we have R(x, t; y, 't") for t > T, we can obtain R for
t < 't from the symmetry condition

R(x, t; y, T) RT(y, 't"; x, t). (2.20)

2.3 Heat flow in a rod with temporally uncorrelated end flow rate

In the development of section (2.1), we have tacitly avoided problems which are one
dimensional in the spatial variable. While our method goes through even for this omitted
case, a special feature of the IBVP for the spatial correlation U(x, y, t) should be pointed
out. We will do this here by way ofthe scalar heat flow problem, (1.2)-(1.4), for a zero mean,
temporally uncorrelated J(t) with

<J(t)J('t"» q('t)<5(t - t). (2.21)
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Upon specializing (2.3)-(2.6) (which hold also for one dimensional problems) to the heat
flow problem, we have

Vt=Vxx+Vyy (O<x,y<l,t>O) (2.22)

Vex, y, 0) = ° (0 :s; x, y :s; I) (2.23)

V(O, y, t) = ° V x( I, y, t) = F(y, t) (0 :s; y :s; I, t > 0) (2.24)

vex, 0, t) = 0, Uy(x, I, t) = F(x, t) (0 ~ x:s; I, t > 0) (2.25)

where F(z, t) = <J(t)u(z, t». From the Green's function representation of the solution
of (1.2)-(1.4),

we get

u(x, t) =rG(x, t [I, t')J(t') dt'
o

F(z, t) = J~ G(z, til, t')<J(t')J(t» dt'

=-!-G(z, til, t)q(t) = -!-o(z - I)q(t).

(2.26)

(2.27)

With (2.27), equations (2.22)-(2.25) define an IBVP which is the same as the problem of
temperature distribution in a unit square plate with a not spot at one of its corners. While
the solution of this problem is straightforward, the inhomogeneous terms in the IBVP for
V are not ordinary functions, in contrast to the higher dimensional case discussed in
section (2.1).

For the special case q(T) = qo (a constant), the steady state response of (1.2)-(1.4) is
known to be a stationary process. Within the framework of our spatial correlation method,
this is reflected in the fact that the steady state solution 0 of (2.22)-(2.25) is independent of
t and may be obtained by solving the boundary value problem (BVP)

Oxx+Oyy=O (O<x,y<l) (2.28)
with

0(0, y) = 0,

O(x, 0) = 0,

0)1, y) = -!-qoO(y - 1).

Oy(x, 1) = -!:qo c5(x - I).
(2.29)

(2.30)

A solution of (2.28)-(2.29) by separation of variables is immediate. We omit the routine
calculations and give here only the final result

O(x, y) = f A
qo

(-I): [sinh(An x)sin(An y) + sinh(An y)sin(An x)]
n=O n cosh n

where An = -t(2n + l)n. The steady state meansquare temperature is then obtained by setting
y = x in (2.30). The single series (2.30) for O(x, y) by our spatial correlation method seems
less cumbersome than the double Fourier series solution obtained by a more conventional
Green's function method with the Green's function expressed in terms of the relevant
normal modes[1].

For a more complex dynamical process which is stationary in its steady state and for
which a numerical solution of the steady state spatial correlation is necessary, it is much
simpler (and less expensive) to obtain this steady state solution by way of a BVP instead of
the corresponding IBVP (see[6] for a discussion on this point).
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3. SHAPED FILTERED SHOT NOISE DATA

As a step toward removing the restriction of temporally uncorrelated data, we consider
in this section the class of boundary data with a random part independent of x. That is, we
have f(x, t) = E(x, t)n(t) where E(x, t) is a known envelope (matrix) function and n(t) is a
zero mean random function. Furthermore, we assume that net) has the same first and second
order statistics as the steady state response of some linear dynamical system characterized
by the vector equation

nt = A(t)n + D(t)w(t) (3.1)

where A and D are known matrix functions of t and wet) is a zero mean vector random
process with

<w(t)wT(t» = Q(t)(j(t - t), (3.2)

Q being a symmetric positive semi-definite matrix. The relation (3.2) implicitly assumes
that a component of n( t) is the response to shot noise of a filter of order not higher than the
dimension of net) itself. If this is not true, then wet), instead of being uncorrelated, should
itself be taken as the response to shot noise of yet another linear dynamical system of order
not higher than the dimension of w, and so on. We will consider in what follows only the
case where a single equation of the form (3.1) suffices since no new element is introduced to
our method of solution by additional equations of the form (3.1).

Since net) is not itself delta correlated, an important relation analogous to (2.9) is no
longer available. We must now devise a new method to obtain the unknown F(x, y, t) in
(2.5) and (2.6) to complete the formulation of the IBVP for the determination of the spatial
correlation matrix.

Similarly, the cross-correlation C(t; y, t) = <n(t)uT(y, t» does not vanish for t> t in
the case of a correlated n( t). The procedure of section (2.2) for the determination of the auto­
correlation matrix must also be modified.

3.1 The spatial correlation matrix

The solution of (3.1) can be expressed in terms of the associated fundamental (or impulse
response) matrix h(t, z):

net) =r h(t, z)D(z)w(z) dz.
-00

From (3.3) follows the relation

<n(t)wT(t'» = H(t - t')h(t, t')D(t')Q(t')

which in turn implies (with the help of (2.7»

<w(t)uT(x, t» = <u(x, t)wT(t» = O.

(3.3)

(3.4)

(3.5)

Now we form the ensemble average of the identity [u(x, t)nT(t)]t = Ut nT + un? after
using (1.7) and (3.1) to eliminate Ut and n? With N(x, t) == <u(x, t)nT(t», we get

Nt =L [N] + NAT (x E V, t > 0) (3.6)

where use has been made of (3.5). Equation (3.6) is supplemented by the initial condition

N(x,O) = 0 (XE V) (3.7)
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and the boundary condition

BAN] = E(x, t)(n(t)nT(t) == E(x, t)~(t), (x E S) (3.8)

which follow from (1.8) and (1.9), respectively. Equations (3.6)-(3.8) completely determine
N(x, t).

Having obtained N(x, t), we then use (2.3)-(2.6) to determine Vex, y, t), where
F(x, y, t) = E(x, t)N (y, t) which does not vanish for y E V, in contrast to (2.4) for temporally
uncorrelated data.

3.2 The autocorrelation matrix

For boundary data which are shaped filtered shot noise, the autocorrelation matrix of u
still satisfies equations (2.17) and (2.19). But equation (2.18) is replaced by

Bxt[R(x, t; y, r)] = E(x, t)C(t; y, r), (x, y) E (S x V) (3.9)

where CCt; y, r) = (n(t)uT(y, r). The right hand side of(3.9) does not vanish for t > r since
n(t) is no longer uncorrelated.

To determine CCt; y, r), we simply multiply (3.1) by uT(y, r) and ensemble average to get

Ct = A(t)C (y E V, t > r) (3.10)

where use has been made of the fact that, for t > r,

(w(t)uT(y, r) = fJ~ (w(t)nT(r')ET(y', r')GT(y, r Iy', r') dr' dy' (3.11)

vanishes in view of (3.4). The ordinary differential equation (3.10) is supplemented by the
initial condition

C(r; y, r) = N(y, r) (3.12)

which follows from the definition of the two quantities involved. Since N(y, r) has already
been determined by (3.6)-(3.8), equations (3.10) and (3.12) define C(t; y, r) for t > rand
y E V. With this result, equations (2.17), (2.19) and (3.9) now determin~ R(x, t; y, r).

From the point of view of a numerical solution for R(x, t; y, r), the procedure outlined
above is much more efficient than the autocorrelation method described in section (2.2)
since it takes advantage of the fact that n(t) is a shaped filtered shot noise process. In
particular, the determination of the cross-correlation C involves only the solution of an
IVP in ODE and consumes only a tiny fraction of the computing time required by the
corresponding step in the autocorrelation method.

3.3 Steady state meansquare temperature distribution in a rod with an exponentially
correlated endflow rate

We now apply the results of section (3.1) to the one dimensional heat flow problem
(1.2)-(1.4) with a zero mean, exponentially correlatedf(t),

(f(t)f(r) = (Toe-a1t-<I, (3.13)

where a > 0 and (To > 0 are positive constants. In the process of obtaining the steady state
meansquare temperature distribution of the rod, we will bring out some additional features
of our method.
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(3.\4)ft + Ct.f = j(2Ct.)w(t)

For the purpose of obtaining the second order statistics of u, we may think ofj(t) as the
steady state (stationary) output of a dynamical system characterized by the ordinary
differential equation

(3.16)

where wet) is a zero mean, ideal white noise process with <w(t)w(t» = 0'0 (j(t - t). We can
show by way of the representation

Jet) = j(2o:) (00 e-a(t-zlw(z) dz (3.15)

that the autocorrelation of j is given by (3.13) and that

<j(t)w(t» = H(t - t)j(2O:)0'0e-a(l- r l

For the present problemf(t) == net) and (3.6)-(3.8) become

F t - Fxx + o:F = ° (3.17)

F(x, 0) = 0, F(O, t) = 0, Fx(l, t) = 0'0' (3.18)

The solution of (3.17) and (3.18) is to be used in (2.24) and (2.25) which, together with
(2.22) and (2.23), completely specify vex, y, t).

However, for the purpose of getting the steady state meansquare (stationary) response, we
note that the steady state solution F of (3.17) and (3.18) is independent of t and can be
obtained from the two point BVP

F(O) = 0, (3.19)

The solution of this steady state version of (3.17) and (3.18) is

-) 0'0 sinh J(o:x)
F(x =J- I'

Ct. cosh va
This solution is then used in the steady state version of (2.22)-(2.25),

Vxx + Vyy = °

(3.20)

(3.21)

with

'0(0, y) = 0,

Vex, 0) = 0,

Vx(l, y) = F(y)

vix, I) = F(x)

(0 ~ y ~ 1)

(0 ~ x ~ 1)

(3.22)

(3.23)

to determine the steady state spatial correlation function.
The solution of the above BVP by separation of variables is

Vex, y) = 20'0 f A 2 (~Al)" h A [sinh(Anx)sin()'nY) + sinh(Any)sin(Anx)] (3.24)
n=O ( n + ()( n cos n

where An = t(2n + 1)n. With 0'0 = a12, we see that this solution reduces to the solution
(2.30) for a white noise j(t) as a -+ 00. It is also not difficult to verify that the series (3.24)
tends to the series representation of a 0 xy (as it should) as iX -+ 0. Thus, the meansquare
temperature distribution is nearly parabolic in x for iX ~ 1. For moderate values of iX, the
series (3.24) converges so rapidly that V may be approximated by the first term of the series.
Again, this single series is less cumbersome than the double Fourier series solution by the
conventional Green's function method.
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For a more complex response process which is stationary in its steady state, the fact that
we may get its steady state spatial correlation by solving two BVP numerically (instead of
two IBVP) constitutes an additional improvement in computational efficiency of the
spatial correlation method.

4. GENERAL BOUNDARY DATA

The step from the results of section 3 to an efficient numerical solution scheme for more
general space-time random boundary data is essentially parallel to that for random distri­
buted loading described in[5]. No new element appears in the analysis for prescribed
random boundary values. Therefore, we will not report the details here but merely refer
readers to[5].

5. CONCLUDING REMARKS

While we have demonstrated in sections 2.3 and 3.3 (as well as in[4] and[5]) the sim­
plicity of the spatial correlation method for simple problems, the usefulness of the method
still lies in its effectiveness for more complex dynamic processes such as the forced random
vibration of flexible lifting rotor blades for which conventional methods are either inapplic­
able or impractical. For these more complex processes, a numerical solution of the mean­
square response by the spatial correlation method requires only a tiny fraction of the com­
puting time needed by other available methods such as the autocorrelation method described
in section (2.2) and in[3-5]. More specific data on the reduction of computing time for the
case of distributed loading can be found in[6, 7].
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A6cTpaKT - B 06JIRCTH MexalillKH cnnoruHoH CPeAbI co CJIY'laHHbIMH rpaHH'IHbIMH llaHHbIMH
llaeTCJ1 rpOPMYJIHpOBKa npocTpaHcTBeHHoro KOppeJIJ1UHOHHOro MeTOlla IlJIJI JIHHel!:Hblx, IlHHa­
MH'IeCKHX 3alla'l. BecbMa BIDKHbIM npH3HaKOM MeTOlla lIBJIJ1eTClI <!>OPMYJIHpOBKa HeCToxaCTH­
'1ecKOl!:, cMeruaHHoH, Ha'iaJIbHO-KpaeBoH 3aLIa'lH LIJHI npeLIJIOlKeHHOH B BHJle MaTpHUbI npo­
cTpaHcTBeHHoH <!>YHKUHH KOppeJIJlUHH BeKTopa napaMeTpa COCTOllHHlI. B 3THX CJIY'IallX, KOfJla
LIJIli CTOXaCTH'ieCKOH 3aLIatJH He nOJIy'laeTcli rpyHKUHlI rpHHa B BHlle H3BeCTHbIX <!>YHKUHH,
HeCKOJIhKO CTOKpaT 60JIee nOJIe3HbIM MeTOjlOM, no cpaBHeHHI{) C LIpyrHMH, jlOcTynHbIMH
MeTOLIaMH, OKa3bIBaeTCli 1fHCJIeHHOe perueHHe cpellHeKBallpaTH1feCKOro nOBe,lleHlIlI II ,llpyrofo
nOBejleHIIJI HToporo nOpll,llKa jlJIli cOBoKynHocTII CTaTHCTII1feCKHX pe3YJIbTaTOB, Ha OCHOBe
Koppemm;HOHHoro MeTOjla. 06pamaeTclI, TaKlKe BHHMaHHe Ha ,llOnOJIIillTeJIbHble ycoBeprueH­
CTBOBaHHR K03<P<!>HUHeHTa 3<!><!>eKTHBHOCTH BhPIIICJIHTeJIbHOH TeXHIIKH B npouecce paC'ieTa
CTaUIlOHapHoro nOBe,lleHHR, Ha OCHOBe npe,llJIOlKeHHOro MeTO,lla.


